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In the basic treatments of the theory of the immersed wing, it is 

assumed that the free surface deviates little from the plane horizontal 

surface of the undisturbed fluid [l, 21. Such an approach renders this 

theory inherently inapplicable to the case of an immersed wing close to 

the free surface, Therefore, it is useful to investigate the character- 

istics of the case of small depths of immersion by means of an exact 

solution even of a simplified problem. 

We shall present the solution of the problem of the two-dimensional 

flow past a vortex of an ideal, incompressible, weightless fluid which 

has a free surface. Underneath, the flow is bounded by a solid hori- 

zontal wall. 

Hopkinson [31 was the first to investigate the theory of Potential 

flows containing singularities. The problems which are closest to the 

one under investigation here were solved by Simmons [d and Nikol’skii 

151 . 

1. General Solution of the problem. Let w be a complex potential and 

5 = dw/vodr the nondimensional complex potential velocity of the vortex 

located at a depth h below the free surface (Fig. 1). Let the rate of 

flow of the fluid be denoted by q/2 = Eu,,, where v0 is the velocity and 

2 is the depth of a stream of infinity. It may be assumed that a general 

solution is obtained if the conformal transformation of the field of 

variation of w and < into any canonical region of variation of the para- 

metric variable T is established. Let us choose this region to be the 
upper half-circle of unit radius with the center at the origin of CO- 

ordinates (Fig. 2). 

If the singularities and zeros of the functions W(T) and j(r) are 
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known in a unit half-circle, then by making use of the whole of the 

Plane which also contains the image of the transformation of W(T) and 

c(T), all of its singularities and zeros may be determined. Thereupon 

the functions W(T) and C(T) may easily be constructed [61. 

Fig. 1. Fig. 2. 

Let us begin with the function W(T). This function has logarithmic 

singularities at the point A(T = iy), where a vortex with circulation r 
is located, and at the points A!(T = - 1) and N(T = l), at which sources 

are located. Upon extending the function W(T) over the whole of the 

plane of the variable T we readily find that there are logarithmic 

singularities also at the points -r = - ;y-’ (circulation - r) and T = 

- iy. T = iy-’ (circulation I-). The function W(T) has the form 

q 1+z ir (T - iy) (T + iT--1) 
w = n In 1 - z + 2Y In (z + ir) (z - ir-1) (1.1) 

By direct verification it is seen readily that: (1) at the point 

T = iy we have a vortex with circulation - r; (2) along the unit half- 

circle (free surface) v = l/2 q and along the real diameter (bottom) 

v = 0. From (1.1) we obtain 

dw [2g - r (7’ - -f)l (TV + 2xz2 + 1) 

dz = n (1 - I?) (22 + yq (9 + r-2) (1.2) 

where . 

P + 7% + rq-’ (r-1 - y) 
2x = -1 - ‘/Jq-1 (r-1 _ y) 

Since the reflection of the region of flow L onto the interior of a 

unit half-circle is conformal, then inside this half-circle dz/dt is 

neither zero nor infinite. Hence we have at the critical points 

dw/d-r = 0. Let us find the values of T at the critical points. They are 

obtained from the solution of the equation 

24 + 2x72 + 1 = 0 

we have 

(1.3) 
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First of all we note that k2 > 1, because otherwise ITkl = 1, and we 
would have critical points on the free surface, which is impossible. 

Consider the case K > 0. Aere Iv1 21 < 1 and 1~~ 4\ > 1. Inside the 
stream there exists only one critical point C, to which there corre- 

sponds in the region T the point (Figs. 1 and 2) 

(1.4) 

The point conjugate to the point C in region T has the affix ‘2 = 

8 = - 6. ft is also evident that ~3 = 8,-i = - v4. 

Contrary to this, in the case K < 0, ] -r3 41 < 1 and 1~1 2 1 > 1. In 

this case there exist on the boundary of th;! flow, that is: on the solid 

wall, two critical points 

In addition, we note that Al = - -r2 = 6-l. 

In the.transitional case K = a there exists one critical point 0 cor- 

responding to T = 0, Using the above observations we can easily con- 

struct the function 5. Besides its zeros at the critical points the 

function 3 = dw/v,,dz has a pole at the point A(‘r = iy). After continu- 

ation across the real axis T, along which Im 3 = 0, the zeros correspond 

to the zeros of the function 3 at the conjugate points and mutually alS0 

the poles. Along the curved line ITI = 1. along which 151 = 1, the zeros 

of the function 3 become the poles and the poles become zeros. We obtain 

as a result 

(1.6) 

It is not difficult to see by a direct check that 3(s) has the cor- 

responding singularities along the bottom Im 3 =: 0. on the free Surface 

I31 = 1 and < = 1 for ? = + 1. The quantity 6 is determined for K > 0 

from (1.4) and for K < 0 from (1.5). 

Equations (1.6) and (1.1) or (1.2) give a general solution of the 

problem. 

2. Immersion depth of a vortex. The function ~(7) is easily found 

from (1.6) and (1.2) 



Vortex near a free surface 1373 

1 vodz dw 
z(z) = G 

s 
xz dt= 

[2q - r (r-l - r)l P 

fivCJ2 s 

(za - y-2)2 dz 
(22 + ~-2)s (I - +j (2.1) 

The integral of (2.1) may be calculated in terms of elementary func- 

tions 

[2q - r (7-l - r)] tj2 
z=- 

vlFf+ (2.2) 

where 

(1 - ?+)a 
A = (i + T-2)a 9 

B = W2 + a-2)2 ,c= (r-2 f 8-2) 
1 + r-2 2 (1 + r-2)2 ’ [3(& I)-$+$I 

The constant of integration is chosen in such a way that z = 0 for -r=O 

(Figs. 1 and 2). 

The immersion depth of a vortex under the free surface equals 

h= 
2 (i) - 2 (ir) 

i 
zcc 

Cr 

- % In (1 + r)a 
i+A (F_ tan-1 ,y 

)I (2.3) 

At a first glance at Figs. 1 and 2 it may appear that for y - 1 the 
immersion depth of the vortex h - 0. But this is not so. There exists a 

minimum possible immersion depth of the vortex h 
mln’ 

A vortex cannot 
rise higher without disrupting the pattern of potential flow. In the 

case of a real submerged wing this initiates the aspiration of air in- 

side, i.e. the appearance of cavitation as a wing comes close to the 

free surface. Assume y = 1 - E, where E is an infinitely small positive 
quantity. Then we obtain asymptotic equations 

Bz2Ik / q, A zi, c=22relq 

After substituting these quantities into 

(2.3) and going to the limit, we find that 

r 
h -p 

min - 2m, 

Fig. 3. 
(2.4) 

Note that the quantity hmin does not depend on the rate of flow q/2. 

3. Lifting force of the vortex. By applying the theorem of the pro- 
jection of the change of rate of momentum it is easily verified that 

the vortex in a weightless fluid has only a lifting force Y and does not 
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have a drag force, hence X = 0. The lifting force of the vortex may be 

calculated by various methods without much difficulty. In particular, 

since the stream lines which approach a vortex indefinitely closely be- 

come infinitely small closed contours which encompass the vortex, the 

force acting on the vortex may be calculated through an integral along 

an infinitely small contour 

(3.1) 

As a result of these computations we find 

y = PD, 12q - r (r-l - r)l (r2 + 62) 
469 (1 + VY [62 (1 + 3T2) - T2 (3 + r2)1 (3.2) 

It is easily verified that at minimum immersion (y - 1) the lifting 
force vanishes, since lim(y2 -I- E2) = 0, for y - 1 and the remaining 

factors are finite. 

According to an interesting comment by S.S. Grigorian in the limit- 

ing case y = 1 weahave the configuration of the flow represented in 

Fig. 3. 

4. The limiting case of infinitely large depth. The limit of the 

general expressions of Section 1 to the case of infinitely large depth 

entails known inconveniences, because in the case of an infinitely large 

depth in a stream we have only one point at infinity, while in the 

region of the variable -r the points at infinity M and N are separated 

by a finite interval. Passage to the limiting case of an infinite depth, 

however, is easily accomplished by replacing the parametric variable T 

by a new parametric variable u varying in the lower half-plane. A Par- 

ticular solution for the case of infinite depth has the form 

dw i-uiil+r/Q+u 
v,dz= i+ui7/1+r/Q---’ 

yz Qu~+~~~~IQ 
u 3x (4.1) 

The reflection onto the lower half-plane is chosen in such a way that 

the point u = - i corresponds to the vortex (Fig. 4) and the points M 

and N go to infinity. The solution in the case of infinite depth using 

reflection on the inside of the circle may be obtained readily from the 

solution of Nikol’skii’s problem [51 of a vortex in a jet of finite 

thickness. 

The lifting force of a vortex in an infinitely deep weightless fluid 

is determined in the following manner: 

For an infinite immersion depth of the vortex r/Q = 0 and Y = pv,r. 
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In the case of minimum depth (r/Q - a) the lifting force vanishes. 

5. The case of downward force. Let us ‘consider another case when the 

circulation of a vortex is directed counterclock-wise, i.e. opposite to 

what is shown in Fig. 1. The pattern of resulting flow is represented 

in Fig. 5. It is noted that the critical Cl will be higher than point A 

even in the field of the parametric variable T (see Fig. 2). As before, 

the complex velocity will be expressed by equation (1.6). and in equa- 

tions (1.1) and (1.2) r must be substituted for - r. In order for the 

Fig. 4. Fig. 5. 

flow to exist it is necessary, as noted above, that K’ > 1. Replacing 

the circulation - r by r in the expression for K and transforming it, 

we find 

t-r + T--Y2 
x = 2 + rq-1 (-p - y) - i 

Since 0 < y < 1, it is evident that K may not be smaller than - 1. 

and therefore, a solution of the problem is possible only for K > 1. 

Substituting K from (5.1) into this inequality, we obtain the inequality 

7-l-- r>zr/q (5.2) 

In the limiting case the inequality (5.2) transform’s into an equal- 

ity. and we obtain from it 

-r = 1/v ’ q2 + 1 - r / q, iJ=i 

This limiting case is not 

come up to the free surface. 

possible because the critical point cannot 

Using (2.3) we may obtain the smallest possible value of vortex 

immersion. In the case under consideration the force Y (see (3.2)). act- 

ing on the vortex. will be not a lift force but a downward force. When 

the vortex approaches the bottom Y approaches - 00. The value of Y, when 

point A approaches its highest location, approaches the value 
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